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Abstract

The modal frequencies and loss factors of a simply supported beam with an enhanced active constrained
layer (EACL) damping treatment are derived by the extended Hamilton principle and Rayleigh–Ritz
method while open- and closed-loop control (displacement and velocity feedback) systems are considered.
The effects of the edge element stiffness in EACL on the sensing ability, modal frequencies and loss factors
of the system are investigated. The vibration characteristics for the systems with fully and partially covered
passive constrained layer damping, active constrained layer damping, and EACL treatments, are discussed
and compared. The effects of several key parameters such as control gain, location and coverage of the
self-sensing actuators on the system performance are also studied. The results show that the enhanced self-
sensing active constrained layer damping treatment is an effective way for vibration control while some
important physical insights are discussed.
r 2004 Elsevier Ltd. All rights reserved.

1. Introduction

The active constrained layer (ACL) damping treatments [1–6] have been explored to improve
the damping ability of the classical passive constrained layer (PCL) damping treatments. A typical
ACL treatment generally consists of a piece of passive viscoelastic material (VEM) sandwiched
between an active piezoelectric layer and the base structure. With a proper control, the shear
deformation of the VEM can be increased and thus the energy dissipation can be enhanced by the
active action of the piezoelectric coversheet. However, it is also recognized that the viscoelastic
layer will degrade the active control authority of the piezoelectric actuator being applied to the
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base structure when compared to a purely active control, due to the reduction of the
transmissibility between the piezoelectric actuator and the base structure [4]. To remedy for the
transmissibility reduction problem due to the softness of the viscoelastic layer, other hybrid
damping configurations, such as separate active and passive designs [7] or enhanced active
constrained layer (EACL) concept [8], were proposed. It has been shown by Liao and Wang [9],
that the EACL is an effective approach to solve the problem of actuator-structure transmissibility
reduction. Recently, Liu and Wang [10,11] studied the static and dynamic longitudinal motions of
the piezoelectric coversheet in the EACL, and major factors that affect the EACL damping
characteristics were examined by assuming strain distribution in the base structure.

Dosch et al. [12] proposed a self-sensing piezoelectric actuator for collocated control and
developed bridge circuits to extract the sensor signal from the actuator control voltage. In the
self-sensing actuator configuration, the piezoelectric element is used simultaneously as both a
sensor and an actuator. Since separate sensors are not needed, space requirement and weight
penalty are reduced. Shen and Yellin [3,13] introduced the self-sensing technique into the ACL to
form a self-sensing active constrained layer (SACL) damping treatment. They have shown that the
SACL will eliminate system instability by ensuring that the power dissipated by the active
damping always remains positive. However, the sensing and actuating abilities of the piezoelectric
layer will be degraded due to the transmissibility reduction problem. Wong and Liao [14] has
experimentally verified that the edge elements in the EACL can significantly improve the sensing
and actuating abilities of the piezoelectric element, and an enhanced self-sensing active
constrained layer (ESACL) damping treatment can provide an effective means for structural
vibration control.

2. Problem statement and objective

In the previous studies by Liao and Wang [9], the piezoelectric constraining layer in the EACL
treatment was used as an actuator only, and overall damping effects instead of loss factors on
different vibration modes were investigated for the cantilever beam with EACL. In the recent
work by Liu and Wang [10], strain distributions of the host structure were assumed to be known
in order to obtain closed form solutions. However, it is difficult to find the accurate strain
distribution of a beam under given boundary condition. Thus, it is hard to understand the
physical insights to the actual configuration while analyzing the effects of location and coverage of
the EACL treatment. In addition, the sensing ability and modal frequencies were not studied in
their paper. Although Wong and Liao [14] implemented an ESACL damping treatment on the
cantilever beam structure, the characteristics of the ESACL treatment have not yet been explored
in depth. In particular, the sensing abilities as well as modal frequencies and loss factors of the
beam system with the EACL under open- and closed-loop controls have not been investigated.
The objective of this paper is to conduct a comprehensive investigation of the above issues for a
simply supported beam with PCL, ACL and EACL treatments. The vibration characteristics for
the beam systems with fully and partially covered PCL, ACL, and EACL treatments under open-
and closed-loop displacement and velocity controls will be discussed and compared. The effects of
several key parameters such as control gain, edge element stiffness, location and coverage of the
self-sensing actuators on the system performances will also be studied.
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3. System description and formulation

3.1. Basic relationships

The ESACL configuration is shown in Fig. 1. The host structure is attached by a VEM layer,
which is constrained by a piezoelectric coversheet. A pair of edge elements mounted at both ends
of the piezoelectric coversheet are used to connect the piezoelectric element directly to the host
structure. The geometry and material of the edge element can be designed and selected to have
different stiffness. The edge elements are modelled as equivalent springs (see Fig. 2). The purpose
of these edge elements is to increase the transmissibility of the active action and sensing capability.
The system model is derived based on the following assumptions:

1. The beam discussed in this paper is an Euler–Bernoulli beam.
2. The rotational inertia is negligible. The shear deformations in the piezoelectric layer and the

base beam are also negligible.
3. Passive damping is only considered due to the shear deformation of the VEM. The VEM has

a complex shear modulus: G�
s ¼ Gsð1þ iZsÞ; where Gs and Zs are the shear modulus and loss

factor of the material.
4. There is perfect continuity at the interfaces and no slip occurs between the layers.
5. The transverse displacement wðx; tÞ is assumed to be the same for all layers.
6. Linear theories of elasticity, viscoelasticity and piezoelectricity are used.

A beam with a partially covered ESACL damping treatment shown in Fig. 2 is considered. The
geometry and deformation of the sandwich beam are shown in Fig. 3. The continuity of
displacements at the interface between the viscoelastic core and the face layers requires that the
following relations hold:

us ¼ ub �
hs þ hb

2

@w

@x
þ

hs

2
gs;

uc ¼ ub � h
@w

@x
þ hsgs; h ¼ 1

2
ðhc þ hbÞ þ hs: ð1Þ
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Fig. 1. Structure with enhanced self-sensing ACL.
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Then,

gs ¼
1

hs

uc � ub þ h
@w

@x

� �
;

where uc; us; and ub are the mid-plane displacements of the piezoelectric, viscoelastic and base
layers along the x-axis, respectively. gs is the shear strain of the VEM.

Based on the Euler–Bernoulli beam theory, the strains in piezoelectric and base layers can be
expressed as follows:

ec ¼
@uc

@x
� zc

@2w

@x2
; eb ¼

@ub

@x
� zb

@2w

@x2
; ð2Þ

where zb and zc are the vertical displacements from the mid-planes of base and piezoelectric layers,
respectively. The piezoelectric material considered here is transversely isotropic and its one-
dimensional constitutive equations are

sc ¼ Ycec � e31E3 ¼ Yc
@uc

@x
� zc

@2w

@x2

� �
� e31E3;

D3 ¼ e31ec þA33E3 ¼ e31
@uc

@x
� zc

@2w

@x2

� �
þA33E3; ð3Þ
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where Yc is the elastic modulus, E3 and D3 are electric field and electric displacement along the
polarization direction, e31 and A33 are the piezoelectric coefficient and dielectric constant,
respectively. Since the piezoelectric layer is thin, E3 is assumed to be independent of z;

E3 ¼ E3ðx; tÞ: ð4Þ

Only transverse vibration of the beam is considered and the inertia forces in the x direction are
neglected for all layers. A free body diagram of the base beam is shown in Fig. 4.

The equilibrium condition along the x direction is

@F

@x
dx � S ¼ 0; ð5Þ

where F is the resultant force in the x direction, F ¼
R

Ab
sb dA ¼ AbYb @ub=@x and S is the shear

force from the VEM, S ¼ tb dx ¼ G�
s gsb dx; where b is the width of the beam. Substituting these

into Eqs. (5) and (1) yields

gs ¼
hbYb

G�
s

@2ub

@x2
; ð6Þ

uc ¼ ub � h
@w

@x
þ g�

@2ub

@x2
; ð7Þ

where g� ¼ hshbYb=G�
s :

The deformations in the edge element springs will be:
Left edge element spring:

DxL ¼ ucðx1Þ � ubðxLÞ þ h
@wðxLÞ
@x

if x1 ¼ xL;

DxL ¼ hsgsðx1Þ ¼ g�
@2ubðx1Þ
@x2

: ð8Þ

Right edge element spring:

DxR ¼ ucðx2Þ � ubðxRÞ þ h
@wðxRÞ
@x

if x2 ¼ xR;

DxR ¼ hsgsðx2Þ ¼ g�
@2ubðx2Þ
@x2

: ð9Þ
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Fig. 4. Free body diagram of base beam.
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3.2. The kinetic and potential energies of beam with the partially covered EACL

The potential energies of the whole system are

V ¼ Vb þ Hc þ Vs þ Vk; ð10Þ

where Vb is the potential energy of the base beam:

Vb ¼
Z

V

sbeb dv ¼
Z L

0

1

2
YbAb

@ub

@x

� �2

þYbIb
@2w

@x2

� �2
" #

dx; ð11Þ

Hc is the electric enthalpy of the piezoelectric layer [15]:

Hc ¼
1

2

Z
½scec � E3D3� dv

¼
1

2

Z x2

x1

YcAc
@uc

@x

� �2

þYcIc
@2w

@x2

� �2
" #

dx �
Z x2

x1

Ace31E3
@uc

@x

� �
dx

�
1

2

Z x2

x1

½AcA33E2
3 � dx; ð12Þ

Vs is the potential energy in the viscoelastic layer:

Vs ¼
1

2

Z x2

x1

AstsðgsÞ
2 dx ¼

1

2

Z x2

x1

G�
s As

hbYb

G�
s

� �2 @2ub

@x2

� �2

dx; ð13Þ

Vk is the potential energy of edge elements, assuming x1 ¼ xL; x2 ¼ xR:

Vk ¼ 1
2

kLðDxLÞ
2 þ 1

2
kRðDxRÞ

2

¼ 1
2

kLðg�Þ
2 @2ubðx1Þ

@x2

� �2

þ1
2

kRðg�Þ
2 @2ubðx2Þ

@x2

� �2

: ð14Þ

The kinetic energy of the transverse vibration in the overall system is

T ¼
1

2

Z x2

x1

ðrcAc þ rsAsÞ
@w

@t

� �2

dx þ
1

2

Z L

0

rbAb
@w

@t

� �2

dx; ð15Þ

where r is the mass density, Ac; As; Ab; are the cross-sectional areas of the respective layers, Ic; Ib

and Yc; Yb are the area moments of inertia and Young’s moduli of the piezoelectric and base
layers, respectively.

If f ðx; tÞ is the external transverse load and Qðx; tÞ is the applied charge density per unit
area to the piezoelectric layer, the virtual works done by the external load and electric charges
are

dW ¼
Z L

0

f ðx; tÞdwðx; tÞ dx þ
Z x2

x1

AcQðx; tÞdE3ðx; tÞ dx ð16Þ
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4. Solution for beam with partially covered EACL

Here we are interested in finding the periodic motion of the system. Assuming that harmonic
loads, f ðx; tÞ ¼ f0ðxÞeiot; Qðx; tÞ ¼ QcðxÞeiot are applied to the system, the steady state responses
will also be harmonic

wðx; tÞ ¼ W ðxÞeiot; ubðx; tÞ ¼ UðxÞeiot; E3ðx; tÞ ¼ EðxÞeiot: ð17Þ

Substituting Eq. (17) into the expressions of the potential and kinetic energies, and virtual works
(Eqs. (10)–(16)), and then into the extended Hamilton principleZ t2

t1

½dðT � VÞ þ dW � dt ¼ 0: ð18Þ

We obtain

d
1

2

Z x2

x1

ðrcAc þ rsAsÞW 2ðxÞo2 dx þ
1

2

Z L

0

rbAbW 2ðxÞo2 dx

	 


� d
Z L

0

1

2
YbAb

@UðxÞ
@x

� �2

þYbIb

@2W ðxÞ
@x2

� �2
" #

dx

( )

� d
1

2

Z x2

x1

YcAc

@UðxÞ
@x

� h
@2W ðxÞ
@x2

þ g�
@3UðxÞ
@x3

� �2

þYcIc

@2W ðxÞ
@x2

� �2
" #

dx

( )

þ d
Z x2

x1

Ace31EðxÞ
@UðxÞ
@x

� h
@2W ðxÞ
@x2

þ g�
@3UðxÞ
@x3

� �� �
dx þ 1

2
Ac

Z x2

x1

½A33EðxÞ2� dx

	 


� d 1
2

kLðg�Þ
2 @2UðxLÞ

@x2

� �2

þ1
2

kRðg�Þ
2 @2UðxRÞ

@x2

� �2
( )

� d
Z x2

x1

G�
s As

hbYb

G�
s

� �2 @2UðxÞ
@x2

� �2

dx

( )

þ
Z L

0

f0ðxÞdW ðxÞ dx þ
Z x2

x1

AcQcðxÞdEðxÞ dx ¼ 0; ð19Þ

where
R t2

t1
e2iot dt; being non-zero, is factored out. The governing equations of motion for the beam

with EACL can be obtained from the above variational equations. From dE ¼ 0; the charge
equation yields

Ace31
@UðxÞ
@x

� h
@2W ðxÞ
@x2

þ g�
@3UðxÞ
@x3

� �
þ AcA33EðxÞ ¼ AcQcðxÞ: ð20Þ

When the external applied charge is zero, the sensor equation due to deformation is

EðxÞ ¼ �
e31

A33

@UðxÞ
@x

þ g�
@3UðxÞ
@x3

� h
@2W ðxÞ
@x2

� �
: ð21Þ

From Eq. (21), the sensing electric field is related to the strain of the piezoelectric element, where the first
two terms come from beam’s axial motion and the third term is attributed to its transverse motion.
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4.1. Open-loop solution

For open-loop system, there is no actuating voltage applied to the piezoelectric layer, i.e.,
Qðx; tÞ ¼ 0; and f ðx; tÞ ¼ 0 for free vibration. In order to obtain system natural frequencies and
loss factors, the displacements are approximated by modal expansion. Since the base beam is the
main structure of the system, it is reasonable to choose the bending modal functions of the base
beam as the expansion of the transverse displacements, and the longitudinal modal functions of a
bar for the axial displacements:

W ðxÞ ¼
XN

n¼1

wnWnðxÞ; UðxÞ ¼
XN

n¼1

unUnðxÞ: ð22Þ

When simply supported boundary condition is considered for the open-loop case, the
displacements to satisfy the boundary condition may be taken in the forms

W ðxÞ ¼
XN

n¼1

wn sinðbnxÞ; UðxÞ ¼
XN

n¼1

un cosðbnxÞ; bn ¼
np
L
: ð23Þ

4.1.1. Natural frequencies and loss factors of the system
Although there is no actuating voltage applied to the piezoelectric layer, there is sensing electric

field on the piezoelectric layer and the form is shown in Eq. (21). The Rayleigh–Ritz method is
employed. Substituting Eqs. (21) and (22) into Eq. (19), taking variation of energy functions with
respect to the undetermined coefficients, w1;w2;y;wn; u1; u2;y; un; and then equating these
coefficients to zero, will result in an eigenvalue equation

M 0

0 0

" #
o2 �

K1 K2

K3 K4

" #( )
wn

un

( )
¼ 0; ð24Þ

where

Mmn ¼ ðrcAc þ rsAsÞ
Z x2

x1

WmðxÞWnðxÞ dx þ
Z L

0

rbAbWmðxÞWnðxÞ dx;

K1
mn ¼ YcIc þ YcAch

2 þ
Ace

2
31h2

A33

� �Z x2

x1

W 00
mðxÞW

00
n ðxÞ dx þ YbIb

Z L

0

W 00
mðxÞW

00
n ðxÞ dx;

K2
mn ¼ � YcAch þ

Ace
2
31h

A33

� �Z x2

x1

W 00
mðxÞ½U

0
nðxÞ þ g�U 000

n ðxÞ� dx;

K3
mn ¼ � YcAch þ

Ace
2
31h

A33

� �Z x2

x1

W 00
n ðxÞ½U

0
mðxÞ þ g�U 000

m ðxÞ� dx;
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K4
mn ¼ YcAc þ

Ace
2
31

A33

� �Z x2

x1

½U 0
mðxÞ þ g�U 000

m ðxÞ�½U 0
nðxÞ þ g�U 000

n ðxÞ� dx

þ
Ash

2
bY 2

b

G�
s

Z x2

x1

U 00
mðxÞU

00
n ðxÞ dx þ YbAb

Z L

0

U 0
mðxÞU

0
nðxÞ dx

þ kLðg�Þ
2½U 00

mðx1ÞU 00
n ðx1Þ� þ kRðg�Þ

2½U 00
mðx2ÞU 00

n ðx2Þ�: ð25Þ

The relations between the undetermined coefficients wn and un can be obtained from
Eq. (24)

fung ¼ �½K4��1½K3�fwng: ð26Þ

Eliminating the terms un from Eq. (24), results in a standard eigenvalue problem, from which the
eigenfrequencies and the vectors of eigenfunctions can be obtained:

f½K � � o2½M�gfwng ¼ 0; ð27Þ

where

½K � ¼ ½K1� � ½K2�½K4��1½K3�:

The eigenfrequencies will be complex since there is a complex shear modulus in the viscoelastic
material. After the complex eigenfrequencies have been found, the modal frequencies and loss
factors of the system can be calculated as follows [16]:

o ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Reðo�Þ2

q
; Z ¼

Im½ðo�Þ2�

Re½ðo�Þ2�
: ð28Þ

4.1.2. Sensing ability of the piezoelectric element
Substituting Eq. (22) into Eq. (21), the sensing electric field becomes

EðxÞ ¼ �
e31

A33

@UðxÞ
@x

� h
@2W ðxÞ
@x2

þ g�
@3UðxÞ
@x3

� �

¼ �
e31

A33

XN

n¼1

½ðU 0
nðxÞ þ g�U 000

n ðxÞÞun � hW 00
n ðxÞwn�: ð29Þ

Substituting Eq. (23) into Eq. (29) and using Eq. (26), the sensing equation for the simply
supported beam becomes

EðxÞ ¼ �
e31

A33

XN

n¼1

½ðg�b3
n � bnÞun þ hb2

nwn� sinðbnxÞ

¼ �
e31

A33

XN

n¼1

Esn sinðbnxÞ; ð30Þ

ARTICLE IN PRESS

J.X. Gao, W.H. Liao / Journal of Sound and Vibration 280 (2005) 329–357 337



where the sensing electric field eigenvectors can be obtained from Esn; and an index %Esn is
introduced to express modal sensing ability

Esn ¼ ðg�b3
n � bnÞun þ hb2

nwn;

%Esn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re2ðEsnÞ þ Im2ðEsnÞ

q
: ð31Þ

4.2. Closed-loop solution

When an impulse is applied to the structure with a self-sensing piezoelectric actuator, the charge
developed by structural deformation on the piezoelectric layer can be found by integrating the
electric displacement D3 in Eq. (3) over the electrode area:

qðtÞ ¼
Z

A

D3 dA ¼
Z x2

x1

e31hc

@uc

@x
� zc

@2w

@x2

� �
dx

¼
Z x2

x1

e31hc
@UðxÞ
@x

þ g�
@3UðxÞ
@x3

� h
@2W ðxÞ
@x2

� �
eiot dx: ð32Þ

The output sensing voltage can be obtained by dividing the charge by the sensor capacitance Cp [12],

Vs ¼
q

Cp

¼
Z x2

x1

e31hc

A33Lc

@UðxÞ
@x

þ g�
@3UðxÞ
@x3

� h
@2W ðxÞ
@x2

� �
eiot dx; ð33Þ

where the Lc is the length of the piezoelectric layer.
The signal can be amplified and fed back using an appropriate controller. The displacement and

velocity feedback controllers are employed in this paper.

4.2.1. Displacement feedback control
When displacement controller is used, the feedback actuating electric field to the piezoelectric

layer becomes

Eðx; tÞ ¼GdVsðx; tÞ=hc

¼
Z x2

x1

Gde31

A33Lc

@UðxÞ
@x

þ g�
@3UðxÞ
@x3

� h
@2W ðxÞ
@x2

� �
eiot dx; ð34Þ

where Gd is the gain of displacement feedback control.
Substituting Eqs. (34) and (22) into (19), the eigenvalue equation will be obtained as done in the

open-loop case, since the displacement feedback control law changes the system stiffness only:

M 0

0 0

" #
o2 �

K1
d K2

d

K3
d K4

d

" #( )
wn

un

( )
¼ 0; ð35Þ

Mmn ¼ ðrcAc þ rsAsÞ
Z x2

x1

WmðxÞWnðxÞ dx þ
Z L

0

rbAbWmðxÞWnðxÞ dx;
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K1
dmn ¼ ðYcIc þ YcAch

2 þ Gfdh2Þ
Z x2

x1

W 00
mðxÞW

00
n ðxÞ dx þ YbIb

Z L

0

W 00
mðxÞW

00
n ðxÞ dx;

K2
dmn ¼ �ðYcAch þ GfdhÞ

Z x2

x1

W 00
mðxÞ½U

0
nðxÞ þ g�U 000

n ðxÞ� dx;

K3
dmn ¼ �ðYcAch þ GfdhÞ

Z x2

x1

W 00
n ðxÞ½U

0
mðxÞ þ g�U 000

m ðxÞ� dx;

K4
dmn ¼ðYcAc þ GfdÞ

Z x2

x1

½U 0
mðxÞ þ g�U 000

m ðxÞ�½U 0
nðxÞ þ g�U 000

n ðxÞ� dx

þ
Ash

2
bY 2

b

G�
s

Z x2

x1

U 00
mðxÞU

00
n ðxÞ dx þ YbAb

Z L

0

U 0
mðxÞU

0
nðxÞ dx

þ kLðg�Þ
2½U 00

mðx1ÞU 00
n ðx1Þ� þ kRðg�Þ

2½U 00
mðx2ÞU 00

n ðx2Þ�;

Gfd ¼
hce

2
31

A33
Gd

Gd

2
þ 1

� �
: ð36Þ

4.2.2. Velocity feedback control
When velocity controller is used, the feedback actuating electric field to the piezoelectric layer

yields

Eðx; tÞ ¼ � Gv

@Vsðx; tÞ=hc

@t

¼
Z x2

x1

Gde31ðioÞ
A33Lc

@UðxÞ
@x

þ g�
@3UðxÞ
@x3

� h
@2W ðxÞ
@x2

� �
eiot dx; ð37Þ

where Gv is the gain of velocity feedback control.
Substituting Eqs. (37) and (22) into (19), we can obtain

M 0

0 0

" #
o2 �

C1 C2

C3 C4

" #
o�

K1
v K2

v

K3
v K4

v

" #( )
wn

un

( )
¼ 0: ð38Þ

The condition for a non-trivial solution of Eq. (38) requires

M 0

0 0

" #
o2 �

C1 C2

C3 C4

" #
o�

K1
v K2

v

K3
v K4

v

" #�����
����� ¼ 0; ð39Þ

where

Mmn ¼ ðrcAc þ rsAsÞ
Z x2

x1

WmðxÞWnðxÞ dx þ
Z L

0

rbAbWmðxÞWnðxÞ dx;

C1
mn ¼ iGfvh

2

Z x2

x1

W 00
mðxÞW

00
n ðxÞ dx;
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C2
mn ¼ � iGfvh

Z x2

x1

W 00
mðxÞ½U

0
nðxÞ þ g�U 000

n ðxÞ� dx;

C3
mn ¼ C2

mn;

C4
mn ¼ iGfvh

Z x2

x1

½U 0
mðxÞ þ g�U 000

m ðxÞ�½U 0
nðxÞ þ g�U 000

n ðxÞ� dx;

K1
vmn ¼ ðYcIc þ YcAch

2Þ
Z x2

x1

W 00
mðxÞW

00
n ðxÞ dx þ YbIb

Z L

0

W 00
mðxÞW

00
n ðxÞ dx;

K2
vmn ¼ � YcAch

Z x2

x1

W 00
mðxÞ½U

0
nðxÞ þ g�U 000

n ðxÞ� dx;

K3
vmn ¼ K2

vmn;

K4
vmn ¼YcAc

Z x2

x1

½U 0
mðxÞ þ g�U 000

m ðxÞ�½U 0
nðxÞ þ g�U 000

n ðxÞ� dx

þ
Ash

2
bY 2

b

G�
s

Z x2

x1

U 00
mðxÞU

00
n ðxÞ dx þ YbAb

Z L

0

U 0
mðxÞU

0
nðxÞ dx

þ kLðg�Þ
2½U 00

mðx1ÞU 00
n ðx1Þ� þ kRðg�Þ

2½U 00
mðx2ÞU 00

n ðx2Þ�;

Gfv ¼
hce

2
31

A33
Gv: ð40Þ

Having obtained the complex eigenfrequencies of the system from Eq. (39), the natural
frequencies and loss factors of the system can be calculated by using Eq. (28).

5. Results and discussions

5.1. Comparisons with results in the literature

To validate the analytical formulation presented in this paper, one example from Lall et al. [17]
will be analyzed first. The materials of base beam and cover layer are the same, Yb ¼ Yc ¼
207 GPa; rb ¼ rc ¼ 7:8� 103 kg=m3; viscoelastic material has complex shear modulus
G�

s ¼ 2:615� 105ð1þ 0:38iÞ Pa; rs ¼ 2:0� 103 kg=m3; the dimension of the beam L ¼ 0:3 m;
hc ¼ 0:5 mm; hs ¼ 2:5 mm; hb ¼ 5:0 mm:

Lall et al. studied a simply supported beam partially covered with a passive damping patch,
which is similar to the configuration shown in Fig. 2 but no edge elements exist. The formulations
in this paper can be used to analyze this example. For the present study, analytical solutions are
obtained by using the first 10 flexural and longitudinal displacement modal functions. Table 1
gives natural frequencies and loss factors of the fully covered beam system and Table 2 shows the
first modal frequencies and loss factors of partially covered beam with different coverage ratios:
ðx2 � x1Þ=L ¼ 20%, 40% and 60% at different positions. It can be seen from Tables 1 and 2 that
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the results obtained from the present method are very close to the those given by Lall et al., except
for that with 40% coverage at position 3 in Table 2, which value may be miss typed in the paper
by Lall et al.

5.2. Natural frequencies of the base beam

The configuration of the simply supported beam system with EACL is shown in Fig. 2. The
geometric and material properties used in calculations are given below. The material of the base
beam is aluminum, which Yb ¼ 70 GPa and rb ¼ 2:71� 103 kg=m3: The piezoelectric material is
PZT-5H, which Yc ¼ 49 GPa; rc ¼ 7:5� 103 kg=m3; e31 ¼ �6:5 C=m2; and A33 ¼ 1:3�
10�8 F=m: The VEM used here has complex shear modulus of G�

s ¼ 0:896� 106ð1þ 0:5iÞ Pa
and rs ¼ 1:0� 103 kg=m3: The dimensions of the system are L ¼ 0:3 m; b ¼ 0:03 m; hc ¼ 0:5 mm;
hs ¼ 1:0 mm; and hb ¼ 4:0 mm: The length and location of the EACL, the stiffness of the edge
elements, and the gain of the feedback control can be varied.

Since the base beam is the main structure of the system, the natural frequencies of the system
are mainly dependent on the base layer. The frequencies of the simply supported beam can be
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Table 1

Comparison between Lall et al. and present approach for fully covered sandwich beam

Mode Results from Lall et al. [17] Results in this paper

Frequency (rad/s) Loss factor Frequency (rad/s) Loss factor

1 740.6 4:48� 10�3 740.6 4:50� 10�3

2 2948.3 1:15� 10�3 2949.0 1:10� 10�3

3 6629.7 5:12� 10�4 6629.7 5:13� 10�4

4 11782.6 2:89� 10�4 11783.0 2:89� 10�4

Table 2

The first modal frequency and loss factor of partially covered sandwich beam from Lall et al. and present approach

Position Percent coverage Results from Lall et al. [17] Results in this paper

Frequency (rad/s) Loss factor Frequency (rad/s) Loss factor

1 20.0 811 0:614� 10�5 811 0:638� 10�5

40.0 789 0:167� 10�3 788 0:174� 10�3

60.0 759 0:929� 10�3 759 0:950� 10�3

2 20.0 793 0:398� 10�4 792 0:412� 10�4

40.0 768 0:363� 10�3 767 0:372� 10�3

60.0 748 0:124� 10�2 748 0:130� 10�2

3 20.0 782 0:600� 10�4 782 0:611� 10�4

40.0 768 0:363� 10�3 758 0:456� 10�3

60.0 744 0:136� 10�2 744 0:140� 10�2
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obtained from on ¼ ðn2p2=L2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y3I3=ðr3A3Þ

p
: Based on this, one can obtain o1 ¼ 644:0 rad=s;

o2 ¼ 2574:0 rad=s; o3 ¼ 5792:0 rad=s; and o4 ¼ 10297:0 rad=s; which are identical to those
calculated by the approach presented in this paper.

5.3. Open-loop system characteristics

5.3.1. Natural frequencies and loss factors of the fully covered beams
The natural frequencies and loss factors of the base beam, the beam with fully covered PCL

(coversheet is piezoelectric material, but no piezoelectric effect is considered, i.e., e31 ¼ 0), the
beam with EPCL (PCL with edge elements), the beam with ACL (piezoelectric effect is considered
but no edge elements), and EACL (ACL with edge elements) are shown in Table 3. It can be seen
that the PCL treatment makes modal frequencies decrease and induces significant loss factors into
the system comparing to those of the base beam. It is also noticed that the piezoelectric effect can
slightly increase the natural frequencies and loss factors comparing ACL to PCL and EACL to
EPCL, even the difference is not significant. It can also be found that the effect of the edge
elements on the natural frequencies and loss factors is evident, the natural frequencies increase but
loss factors decrease significantly with the increase of the edge element stiffness, especially for
lower modes. It is understood that the edge elements make the whole system stiffer and the VEM
becomes more difficult to deform.

5.3.2. Natural frequencies and loss factors of the partially covered beams
The piezoelectric patch is set at two positions on the base beam for partial coverage: Location 1

as x1 ¼ 0:0 m and x2 ¼ x1 þ 0:06 m; Location 2 at the center of the beam, i.e., x1 ¼ 0:12 m and
x2 ¼ x1 þ 0:06 m: In both cases, the length of the treatment remains 6 cm; which is 20% coverage.
The natural frequencies and loss factors of the beams with partially covered PCL, EPCL, ACL
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Table 3

Natural frequencies and loss factors of beams with fully covered PCL, EPCL, ACL and EACL

Mode 1 Mode 2 Mode 3 Mode 4

Frequency

(rad/s)

Loss

factor

Frequency

(rad/s)

Loss

factor

Frequency

(rad/s)

Loss

factor

Frequency

(rad/s)

Loss

factor

Base beam only 644.0 0 2574.0 0 5792.0 0 10297.0 0

Beam with PCL 586.4 0.0612 2206.4 0.0242 4893.4 0.0119 8653.2 0.0069

Beam with EPCL

kL ¼ kR ¼ 106 N=m 599.0 0.0477 2230.6 0.0222 4918.0 0.0115 8681.2 0.0067

kL ¼ kR ¼ 107 N=m 644.1 0.0161 2365.4 0.0129 5008.0 0.0125 8850.5 0.0061

Beam with ACL 587.1 0.0633 2206.6 0.0245 4893.5 0.0119 8653.2 0.0069

Beam with EACL

kL ¼ kR ¼ 107 N=m 648.4 0.0170 2370.0 0.0133 5011.9 0.0125 8854.9 0.0061
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and EACL at locations 1 and 2 are shown in Tables 4 and 5, respectively. It is clearly shown
that the partially covered PCL treatment can decrease the system frequencies and increase loss
factors as discussed for the fully covered beam. The edge elements increase the system frequencies
and decrease the loss factors at location 1; however, the edge elements increase the second and
fourth modal loss factors at location 2. It can also be seen from Tables 4 and 5 that the loss factors
of the beam with partially covered PCL or ACL are greatly related to the location of the
treatment. For example, the first modal loss factor is much larger at location 2 than that at
location 1; however, the second modal loss factor is larger at location 1 than that at location 2.
That means we can place the patch at an appropriate location for a specific modal vibration
to be controlled.

Fig. 5 shows the effects of locations (the central point position of the patch, x ¼ ðx1 þ x2Þ=2) of
the treatments (length of the treatment is 6 cm; i.e., 20% coverage) on the first four modal
frequencies and loss factors of the beam with partially covered ACL and EACL. As expected, it is
shown that the modal frequencies and loss factors of the beam systems vary a lot with the change
of locations of these partially covered treatments on the beam. It can be seen that the modal loss
factors will reach the maxima while the corresponding modal frequencies are reaching or close to
the minima. It can be explained that system frequencies will be increased when the system
becomes stiffer, then the loss factors will be decreased due to less VEM deformation. It can also be
found that the edge element stiffness has great effect on the frequencies and loss factors. The edge
elements can increase frequencies of all modes; however, they could cause loss factors decrease at
some locations but increase at others. For example, shown in Fig. 5(d), the second modal loss
factor of the system with EACL at the positions near to the center of the beam will be larger than
that of the system with ACL. This is also shown in Table 5, which the second and fourth modal
loss factors at the center will increase with the increase of the edge element stiffness. Similar
phenomena can be observed for the third and higher modal loss factors at other locations. It is
interesting to note that the edge elements with stiffness kL ¼ kR ¼ 107 N=m make the variation of
the fourth modal frequency and loss factor opposite to those with the ACL as shown in Figs. 5(g)
and (h).

Next, different coverage ratios of the treatments will be investigated. Fig. 6 shows the effect of
different coverage ratios, ðx2 � x1Þ=L ¼ 20%, 40% and 60%, respectively at different positions on
the first four modal frequencies and loss factors of the beam with partially covered ACL and
EACL ðkL ¼ kR ¼ 106 N=mÞ: It can be found that larger coverage ratios can cause larger loss
factors and reduce the modal frequencies. It should be noted that coverage ratios can also change
the patterns of the frequencies and loss factors. For example, the peak points of the third and
fourth frequencies with 40% coverage reverse comparing to those with 20% coverage; similar
reverse changes can be found for the second and third modal frequencies, as well as the fourth loss
factor with 60% coverage comparing to those with 20% coverage. Together with the coverage and
location, the edge element stiffness also has significant effect on the frequencies and loss factors. It
changes not only the values of frequencies and loss factors, but also their patterns. For example,
the pattern of the third modal loss factor of the EACL system with 60% coverage inverses as
shown in Fig. 6(f) due to the edge elements compared to the ACL with the same coverage.

The correlation between the modal loss factors and the modal functions (mode shapes) of the
base beam can be observed from Fig. 5. With 20% coverage of ACL, the modal loss factors and
mode shapes are closely related because the base beam is the main structure of the system. The
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Table 5

Natural frequencies and loss factors of the beams with partially covered PCL, EPCL, ACL and EACL at Location 2: x1 ¼ 0:12 m; x2 ¼ x1 þ 0:06 m

Mode 1 Mode 2 Mode 3 Mode 4

Frequency

(rad/s)

Loss factor Frequency

(rad/s)

Loss factor Frequency

(rad/s)

Loss factor Frequency

(rad/s)

Loss factor

Base beam only 644.0 0 2574.0 0 5792.0 0 10297.0 0

Beam with PCL 596.1 1:60� 10�3 2547.3 5:72� 10�5 5496.2 1:30� 10�3 9968.4 1:83� 10�4

Beam with EPCL

kL ¼ kR ¼ 107 N=m 616.6 7:03� 10�4 2547.8 2:09� 10�4 5648.1 6:60� 10�4 9974.4 7:08� 10�4

The beam with ACL 596.1 1:60� 10�3 2547.3 5:77� 10�5 5496.2 1:30� 10�3 9968.4 1:84� 10�4

Beam with EACL

kL ¼ kR ¼ 107 N=m 617.0 7:26� 10�4 2547.8 2:10� 10�4 5650.9 6:82� 10�4 9974.4 7:10� 10�4

Table 4

Natural frequencies and loss factors of the beams with partially covered PCL, EPCL, ACL and EACL at Location 1: x1 ¼ 0; x2 ¼ x1 þ 0:06 m

Mode 1 Mode 2 Mode 3 Mode 4

Frequency

(rad/s)

Loss factor Frequency

(rad/s)

Loss factor Frequency

(rad/s)

Loss factor Frequency

(rad/s)

Loss factor

Base beam only 644.0 0 2574.0 0 5792.0 0 10297.0 0

Beam with PCL 636.9 1:69� 10�4 2493.2 6:20� 10�4 5538.6 9:96� 10�4 9878.1 1:0� 10�3

Beam with EPCL

kL ¼ kR ¼ 107 N=m 639.1 1:09� 10�4 2524.0 3:73� 10�4 5647.1 5:63� 10�4 10070.0 5:61� 10�4

Beam with ACL 636.9 1:70� 10�4 2493.2 6:21� 10�4 5538.6 9:98� 10�4 9878.2 1:0� 10�3

Beam with EACL

kL ¼ kR ¼ 107 N=m 639.1 1:12� 10�4 2524.5 3:80� 10�4 5648.9 5:75� 10�4 10074.0 5:76� 10�4
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modal loss factors will reach maxima at locations corresponding to the peak amplitudes of the
mode shapes and minima at the nodes of the mode shapes of the base beam. For example, the first
modal loss factor will be maximum when the ACL patch is placed at the center of the beam. At
the same location, the second modal loss factor becomes minimum since it is the nodal point of
the second mode. Comparing EACL to ACL cases, it should be noted that the edge elements can
lessen the effect of the vibration nodes on the loss factors. On the other hand, it can be seen from
Fig. 6 that increasing the coverage of ACL or EACL will reduce the correlation between the
modal loss factors and the mode shapes of the base beam. The reason is that the stiffness and
damping of the patch with larger per cent coverage (for example, 60%) ACL or EACL will have
greater influence on the performance of the whole system. In these cases, the variation of the
modal loss factors with respect to the location of the patch will be more complicated, especially
for higher modes.
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Fig. 5. Effect of location of ACL and EACL treatments (20% coverage) on the first four modal frequencies and loss

factors (—— ACL, - - - - EACL with kL ¼ kR ¼ 106 N=m; – – – – EACL with kL ¼ kR ¼ 107 N=m).
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5.3.3. Sensing ability of systems
After the eigenvectors of transverse displacements have been found from Eq. (27), the

eigenvectors of electric field and modal sensing ability indices can be obtained from Eq. (31). Fig. 7
shows the effect of the edge element stiffness on the first two modal sensing ability indices of
the beams with fully covered EACL beam. It can be seen that the edge elements can improve the
sensing ability significantly. For example, the first and second modal sensing ability indices of
the EACL beam with edge element stiffness kL ¼ kR ¼ 107 N=m increase about 2.4 and 4.0 times
compared to the ACL cases ðkL ¼ kR ¼ 0Þ: It is also clearly shown in Fig. 7 that the sensing ability
of the piezoelectric element increases with the increase of the edge element stiffness. Fig. 8 shows
the first two modal sensing ability indices of the piezoelectric element in the beam with 20%
partially covered ACL and EACL at different location ðx ¼ ðx1 þ x2Þ=2; the central point of the
patch). It is illustrated that the first and second modal sensing ability indices with edge element
stiffness kL ¼ kR ¼ 107 N=m increase about 10 and 2 times comparing with the ACL beam. It is

ARTICLE IN PRESS

Fig. 5 (continued).
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also demonstrated that the sensing ability of the systems with partially covered ACL and EACL
have close relations with position of the treatment, and the vibration modes of the base beam. It
can also be found that the systems with partially covered ACL and EACL treatments can produce
better modal sensing ability than that of the system with fully covered EACL for a certain mode
by comparing with fully covered EACL treatment as shown in Fig. 7. For example, the second
modal sensing abilities of the beam with partially covered EACL at the positions around one-
fourth or three-fourths of the beam may be larger than that with fully covered EACL under the
same edge element stiffness. It may be explained that some electric signals for the mode could be
canceled out for the beams with fully covered ACL or EACL treatments, and therefore the fully
covered ACL or EACL treatments may have worse sensing abilities than those with partially
covered ACL or EACL.
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Fig. 6. The first four modal frequencies and loss factors versus different percent coverage of ACL and EACL

treatments (20% coverage: —— ACL, - - - - EACL; 40% coverage: —r— ACL, ?r? EACL; 60% coverage: —J—

ACL, ?J? EACL).
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5.4. Closed-loop system characteristics

5.4.1. Displacement feedback control
5.4.1.1. Effect of displacement control gain and edge element stiffness. Fig. 9 shows the effect of
displacement control gain and edge element stiffness on the first four modal frequencies and loss
factors of the beam with partially covered ESACL at position x1 ¼ 0:05 m; x2 ¼ x1 þ 0:06 m
(20% coverage). It can be found that the modal frequencies will increase significantly with
the increase of the edge element stiffness, while the control gain has very little effect on
the frequencies. It can also be seen that the modal loss factors increase with the increase of the
displacement control gain. However, the loss factors of the first two modes decrease with the
increase of edge element stiffness when the control gain is small, but increase when the control
gain is getting larger. It can be explained that the passive damping dominates as the actuating
voltage is small, and there is less shear deformation in the VEM layer due to the existence of the
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Fig. 6 (continued).
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stiff edge elements, therefore the loss factors of the first two modes will be reduced with the
increase of the edge element stiffness. When the control gain is getting larger, the active damping
will be dominating since the active moment transmitted from the piezoelectric layer to the base
beam via the edge elements becomes dominative. It indicates larger actuating/sensing abilities
result in larger loss factors for active vibration control. Furthermore, for the third and fourth
modes, the modal loss factors become larger with the increase of edge element stiffness no matter
the control gain is small or large. In these cases, edge elements are helpful for providing both
passive and active damping. This phenomenon shows that the active/passive hybrid damping
characteristics of the beam with partially covered ESACL is complicated. The damping
characteristics are not only dependent on the control gain and edge element stiffness, but also the
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Fig. 7. The first two modal sensing ability indices of the beam with fully covered EACL versus edge element stiffness.

Fig. 8. The first two modal sensing ability indices of beam with partially covered ACL and EACL: - - - - ACL, ——

EACL with kL ¼ kR ¼ 106 N=m; – – – – EACL with kL ¼ kR ¼ 107 N=m:
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vibration modes of interest. It can also be seen from Fig. 9 that the loss factors are greatly affected
by the displacement control gain, especially when the edge element stiffness is large. However, the
control gains have only little effect on the loss factors for the SACL case (zero edge element
stiffness). It is concluded that the loss factors of the ESACL treatment will be larger with larger
control gain but higher edge element stiffness is needed.

5.4.1.2. Effect of location and coverage of SACL and ESACL treatments. The following
discussions will be focused on the difference between the open- and closed-loop damping
characteristics, as well as the unique phenomena for the closed-loop performance with varying
location and coverage of SACL and ESACL treatments.

Fig. 10 shows the effect of different coverage ratios, ðx2 � x1Þ=L ¼ 20%, 40% and 60%,
respectively, at different positions on the first four modal loss factors of the beam with partially
covered SACL and ESACL ðkL ¼ kR ¼ 106 N=mÞ; as the displacement control gain Gd ¼ 60: It is
shown that the variations of position and coverage ratios of SACL and ESACL patches have
very significant effect on the modal loss factors as discussed in the open-loop control systems. It
can be seen that loss factors can be greatly improved by activating the SACL and ESACL with
closed-loop displacement feedback control when comparing to the systems with passive ACL and
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Fig. 9. Effect of displacement control gain and edge element stiffness on the first four modal frequencies and loss

factors of the beam with partially covered ESACL.
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EACL as shown in Fig. 6. Comparing the ACL and EACL cases, the controlled loss factors of the
ESACL are generally greater than those of the SACL treatment for the shown locations and
coverage, even when the uncontrolled loss factors of the ACL are larger than those of the EACL
as shown in Fig. 6. This shows that the edge elements in ESACL with control action can
significantly improve the system loss factors as compared to the SACL treatment. The edge
element stiffness also plays an important role on the values and patterns of the modal loss factors.

The loss factors shown in Fig. 10 are the hybrid loss factors that include both passive and active
damping produced by SACL or ESACL treatments. It would be interesting to show the active loss
factors induced by active control with SACL and ESACL treatments. The active loss factors are
obtained by subtracting the open-loop passive loss factors from the hybrid loss factors. Fig. 11
shows the active loss factors of the first four modes of the systems with different coverage ratios
and location of the SACL and ESACL. It can be seen that the active damping of system with
SACL damping treatments can be significantly enhanced by mounting edge elements at both ends
of the piezoelectric layer. The ESACL treatment can produce larger active loss factors not only
for the first mode but also for higher modes. The active modal loss factors of the systems with
SACL and ESACL are also greatly related to the location and coverage of the treatments. It can
be found that the bigger coverage ratio can produce the larger active loss factor for the first mode,
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Fig. 9 (continued).
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but it becomes different for the higher modes. For example, the simply supported beam with 60%
coverage of ESACL can produce larger active loss factors than those of the system with 20% or
40% coverage for the first two modes; however, 40% coverage of ESACL can bring out the
biggest loss factors for the third and fourth modes in the present case. It would be expected that
the hybrid damping characteristics of the systems with partially covered SACL or ESACL are
even more complicated, since both active and passive damping performances are not only related
to the control gain and edge element stiffness, but also the location and coverage of treatments, as
well as the modes of interest.

5.4.2. Velocity feedback control

5.4.2.1. Effect of control gain and edge element stiffness. Fig. 12 shows the effect of velocity
control gain and edge element stiffness on the first four modal loss factors of the beam with
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Fig. 10. Hybrid loss factors with displacement feedback versus different location and coverage of SACL and ESACL

treatments (20% coverage: —— SACL, - - - - ESACL; 40% coverage: —r— SACL, ?r? ESACL; 60% coverage:

—J— SACL, ?J? ESACL).
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partially covered ESACL at position x1 ¼ 0:05 m; x2 ¼ x1 þ 0:06 m (20% coverage). It can be
seen from these figures that the modal loss factors will hardly vary with the increase of the control
gain for the SACL system corresponding to the cases where the edge element stiffness is zero in
Fig. 12. It is because the active control force from the piezoelectric layer to the base structure does
not significantly increase due to the transmissibility reduction caused by the viscoelastic layer
although the control voltage increases. However, with the addition of edge elements, loss factors
of the ESACL system will increase with the increase of the edge element stiffness and control gain.
This shows again that the ESACL treatment can effectively solve the transmissibility problem. It
is also demonstrated that there exists an optimal control gain for a given edge element stiffness to
maximize the loss factor of the ESACL system. It should also be noted that the loss factors could
slightly decrease with the increase of the edge element stiffness as the velocity control gain is small;
however, the loss factors will increase significantly with suitable control gain and edge element

ARTICLE IN PRESS

Fig. 11. Active loss factors with displacement feedback versus different location and coverage of SACL and ESACL

treatments (20% coverage: —— SACL, - - - - ESACL; 40% coverage: —r— SACL, ?r? ESACL; 60% coverage:

—J— SACL, ?J? ESACL).
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stiffness because the stiff edge elements will bring out the control action from the actuator. It is
concluded that the edge element stiffness and velocity control gain have crucial effects on the loss
factors of the ESACL system and a suitable combination of the edge element stiffness and control
gain can maximize the modal loss factors.

5.4.2.2. Effect of location and coverage of SACL and ESACL treatments. Fig. 13 shows the first
four hybrid loss factors of system with different percent coverage 20%, 40% and 60% of the
SACL and ESACL treatments at different positions of the beam with the same velocity gain
Gv ¼ 0:01 and edge element stiffness kL ¼ kR ¼ 107 N=m: It can be seen that the variations of
position and coverage of the SACL and ESACL patches also have very significant effect on the
modal loss factors as discussed in the displacement feedback control. The loss factors can be
significantly improved by attaching ESACL patch with closed-loop velocity feedback control
when comparing to the open-loop system. The edge elements in ESACL have significant effect on
increasing the system loss factors as compared with the SACL treatment. Optimal hybrid modal
loss factors for specific vibration modes of interest could be obtained by choosing location and
coverage of the ESACL treatment with suitable edge elements stiffness.

In order to quantify the contribution of active action on loss factors, the first four modal active
loss factors of system with different coverage of the SACL and ESACL are shown in Fig. 14,
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Fig. 12. Effect of velocity control gain and edge element stiffness on the first four modal loss factors of beam with

partially covered ESACL.
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which are obtained by subtracting the open-loop passive loss factors from the closed-loop hybrid
loss factors. It can be seen that the ESACL treatment can produce larger active damping than the
SACL system for most cases. The active loss factors of the beam with SACL and ESACL
treatments are greatly related with the location and coverage of the treatments within the beam, as
well as the vibration modes of interest. It can also be found that the larger coverage ratio can
produce the larger loss factor for the first mode, but it may not be true for higher modes. For
example, the beam with 60% ESACL coverage can have larger loss factor than that of the system
with 20% or 40% coverage for the first mode; however, 40% ESACL coverage can bring out the
largest loss factors for the other three modes in the present case. These phenomena are similar to
the results using displacement feedback control as discussed in Section 4.3. However, their
variation patterns with coverage and location are different. We can see that the velocity feedback
control could generally produce larger active damping than the displacement feedback control by
comparing Fig. 14 with Fig. 11, especially for the higher modes.
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Fig. 13. Hybrid loss factors with velocity feedback versus different location and coverage of SACL and ESACL

treatments (20% coverage: —— SACL, - - - ESACL; 40% coverage: —r— SACL, ?r? ESACL; 60% coverage,

—J— SACL, ?J? ESACL).
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6. Conclusion

In this paper, the extended Hamilton principle and Rayleigh–Ritz method are used to analyze
simply supported beams with ACL and EACL treatments. The modal frequencies and loss factors
of the beam with fully or partially covered ACL and EACL are discussed while open- and closed-
loop systems are considered. Simulation results show that the EACL damping treatment with self-
sensing displacement or velocity feedback control is an effective means for vibration control of
structures. The ESACL system can achieve much better active damping than the SACL system for
most cases. The EACL treatment cannot only significantly improve the sensing ability of the
piezoelectric element, but also change the modal frequencies and loss factors, which are important
for practical designs of structural control systems. The location and coverage of patches have also
great effect on modal frequencies and loss factors of the system with partially covered ACL or
EACL for both open- and closed-loop controls. The edge element stiffness also plays a crucial role
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Fig. 14. Active loss factors with velocity feedback versus different location and coverage of SACL and ESACL

treatments (20% coverage: —— SACL, - - - ESACL; 40% coverage: —r— SACL, ?r? ESACL; 60% coverage,

—J— SACL, ?J? ESACL).
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on the system characteristics. By adjusting the feedback control gain, edge element stiffness,
location and coverage of the ESACL, optimal performance for controlling vibration of a specific
mode of a beam structure could be obtained.
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